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This  paper  studies  similarity  solutions  of  Kundu-Eckhaus  (KE)  equation  that  models  wave propagation in a dispersive 
medium such as in optical waveguide. Lie classical method is applied to obtain symmetries of KE equation and then using 
these symmetries reduction to ordinary differential equations (ODEs) is obtained. The corresponding exact solutions of KE 
equation are also presented. 
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1. Introduction 

 

Optical solitons in dispersive media is a very 

demanding topic of research in the field of 

nanophotonics [1-10].  There are a couple of models that 

are studied in this context.  One of them is the popular 

Schrödinger-Hirota equation (SHE). There are several 

results that are reported in this context. This paper 

however will address another equation that is less 

poipular but is gradually gaining attention currently [3, 

5, 6, 9, 10]. This is the Kundu-Eckhaus (KE) equation. 

Very recently dark and singular soliton solutions are 

reported for this model [3]. This paper will study KE 

equation from the point of view of Lie symmetry and 

group analysis.  There are several forms of solution that 

are obtained in this paper, which will be of great asset in 

fiber optics community. 

 

 

2. Governing equation 
 

The KE equation is in the following form: 
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where ),( txqq   is a complex-valued function. This 

equation is a nonlinear Schrödinger type. The KE 

equation was presented by Calogero and Eckhaus [2] as 

an asymptotic multiscale reduction of certain classes of 

nonlinear partial differential equations. 

 

 

 

 

3. Symmetry analysis 
 

In this section, we will perform Lie symmetry analysis 

[1, 7, 8, 4] for equation (1).  Firstly let us assume 
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Substituting (2) into (1), and separating real and 

imaginary parts, we have 
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Let us consider one parameter Lie group of 

transformation 
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),,,(* 2 vutxvv                         (6) 
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with small parameter 1 .  

The associated vector field with the above group of 

transformations can be written as 
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Applying the second prolongation V(2)pr of V to 

Eqs. (3) and (4), we find that the coefficient functions  , 

 , 1  and 2 ,  must satisfy the invariance condition 
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Substituting the infinitesimals 
t

1 , 
t

2 , 
xx

1 , 
xx

2  

into equations (6), then using the equations (3) and (4), 

and equating the coefficients of the various monomials in 

the first, second and the other order partial derivatives 

with respect to x  and various powers of u , we get the 

determining equations. Solving these determining 

equations, we get the following forms of the 

infinitesimals 
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where 1C , 2C , 3C , 4C , 5C  and 6C  are arbitrary 

constants. 

Corresponding vector fields are 
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Let us consider following vector fields for the reduction 

of system of equations (3) and (4) 

(1) 321 VVV   

(2) 4V  

(3) 5V  

(4) 6V  

where   and   are arbitrary constants. 

For each case, one can get the reduction using 

characteristic equations: 
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4. Similarity reductions and exact solutions 
 

4.1 Vector field 321 VVV   

 

Corresponding similarity variables are as follows: 

 

tx                                    (23) 
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where   is new independent variable and F  is new 

dependent variable. 

Substituting (23) and (24) in (1), we have following 

system of ODEs 
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where prime denotes derivatives with respect to  .  

Solution of ODE system (25) and (26) is as follows 
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where 
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and  1C , 3C  are arbitrary constants. 

Corresponding solution of main system (1) is as 

follows 
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where 2C  is given by (29).  

 

4.2 Vector field 4V  

 

Corresponding similarity variables are 
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where   is new independent variable and F , G  are 

new dependent variables. 

Using the similarity variables (31)-(33) in (1), we 

obtain following system of ODEs 
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where the prime  denotes derivatives with respect to  . 

 

4.3 Vector field 5V  

 

Solving characteristic equation (22), we have following 

similarity variables 
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where   is new independent variable and P , Q  are new 

dependent variables. 

Substituting the similarity variables (36) and (37) into 

(1), we have 
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where the prime  denotes derivatives with respect to  . 

Solving (38) and (39), we obtain following general 

solution 
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where 1C  and 2C  are arbitrary constants. 

Corresponding solution of main equation (1) is given 

by 
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4.4 Vector field 6V  

 

Similarity variables are 
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where   is new independent variable and S , T  are 

new dependent variables. 

Now using (21) in (1) and separating real and 

imaginary parts, we have 
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where the prime  denotes derivatives with respect to  . 

We obtain following solutions of (22) 
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where 1C , 2C  and 3C  are arbitrary constants. 

Corresponding solutions of main equation (1) are as 

follows 
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5. Conclusion 
 

This paper studied symmetry analysis for KE 

equation.  The Lie classical method is utilized for 

obtaining the group infinitesimals. Using obtained 

infinitesimals, the KE equation is reduced to ODEs. 

Corresponding to the reduced ODEs, certain exact 

solutions are presented that are going to be very useful.  

The obtained solutions have also been verified by 

substituting them back into the original equation using 

Maple. 
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